=PFL Cours 6

* Premier principe de la thermodynamique.
o Chaleur élémentaire, suite
o Complément mathématique, forme différentielle.
o Tests, chaleur, travail.

Every mathematician knows it is impossible to understand an elementary course in thermodynamics.
V.I. Arnold, Proceedings of the Gibbs Symposium, (American Mathematical Society, 1990), p. 163.
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Les objectifs dw cours 6

PG : Thermodynamique

Comment quantifier changement de température et
quantite de chalewr échangée

Completementy mathématiques sur les différentielles d une
fonction de plusiewrs variables : une approche
pragmatique de physicier

Chalewr et trovail sont elles des quantités conservalives
(indépendante de lo transformation,) ?
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Chaleur élémentaire

PG : Thermodynamique

Cours précédents : L'expérience quotidienne montre que si on délivre ou
bien on extrait de la chaleur a un corps, sa température change (sauf cas
particulier des transitions de phase). Q_=C X (T;—=T))

Nous avons remarqué que, par exemple pour un gaz, il faut étre un peu plus
precis.
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Chaleur élémentaire

Chaleur spécifique a volume constant

« Soit une certaine quantité de gaz dans un volume V a la pression p.

* Latempérature s’éléve de AT sans que le volume change.
o Note : = il n'y a pas de travail mécanique mis en jeu
V =cst, 8W =- pg,: dV =0

* Quelle est la quantité de chaleur Q échangée?

o L'expérience montreque: | Qx AT | et |Qxm,n

o Le coefficient de proportionnalité s'écrit :

AV =0

@' o

PG : Thermodynamique

I -T+AT

Q= CV AT
Q =n Cy, AT (n: nombre de moles) A
Q =m cyAT (m: masse)

unités
Cy: capacité calorifique a volume constant (J/K)

Cym: capacité calorifique molaire a volume constant (J/K/mol)
cy. capacité calorifique massique a volume constant (J/K/kg)
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EPFL Chaleur élémentaire

Chaleur spécifique a volume constant

Quelques valeurs de ¢y et Cy,

PG : Thermodynamique Cours 6 5/46
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Rappel : Cours 4, Théorie cinétique des gaz

Chaleur spécifique a volume constant

« Postulat (Boltzmann) : Equipartition de I'énergie : A I'équilibre thermodynamique chaque
"degré de liberté" du systéme possede la méme quantité d'énergie et vaut 7z kgT par
"degré de liberté" (avec une nouvelle constante fondamentale introduite par Boltzmann
kg = 1.38.10-2 J/K)

 Pour Eg,, il y a 3 directions de translation possibles, nous avons:

* Note : nous reviendrons un peu plus tard cette notion de "degré de
liberté" qui ne vaut pas nécessairement 3.

PG : Thermodynamique Cours 6 6/46



=Pr-L Rappel : Cours 4, Théorie cinetique des gaz

Gaz parfait, nouvelle quantité, fonction d'état : Energie interne

« Clest I’énergie cinétique microscopique (dans le référentiel du centre de masse)
* Premiere définition pour un gaz parfait mono-atomique (notre modéle) :

3
U = 2 Emolécules Emolécules = _kBT

particules 2
3 3
U =—Nk,T =—nRT
2 2
James Prescott Joule
1818 - 1889
Premiére loi de Joule : Pour un gaz parfait I'énergie interne 3
H : z UGP mono-atomique = _nRT
est uniquement fonction de la température q 2

Indépendant de la pression P et du volume V.

PG : Thermodynamique Cours 6 7/46
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Chaleur élémentaire

Chaleur spécifique a volume constant

A volume constant : |6Q = C dT

Il n'y a pas de travail macroscopique mécanique échangé (V = Cst), les seuls
échanges d'énergie sont de nature microscopique. Cette forme d'énergie est
comptabilisée dans ce que nous avons appelé pour un gaz parfait I'énergie interne, U.

* Avec U I'énergie interne du systéme.

» Pour un gaz parfait, elle correspond a I'énergie cinétique totale de
toutes les particules.

« On généralisera la notion d'énergie interne avec l'introduction du
premier principe.

On appelle chaleur spécifique a volume constant la quantité :

oU
C =| —
T ),

PG : Thermodynamique
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Rappel : Cours 4, Théorie cinétique des gaz

Chaleur spécifique a volume constant

Gaz parfait. Energie interne:

* Note : nous reviendrons un peu plus tard cette notion de "degré de
liberté" qui ne vaut pas nécessairement 3.

Plus précisément : f est le nombre de manieres indépendantes dont I'énergie peut
étre stockée dans le systeme.

Techniquement : f est le nombre de variables quadratiques indépendantes dont
dépend I'énergie.

PG : Thermodynamique Cours 6 9/46
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Chaleur élémentaire

Chaleur spécifique a volume constant

Gaz parfait. Energie interne:

f est le nombre de variables quadratiques indépendantes dont dépend I'énergie.

Exemples :
Une particule libre a une dimension E= %mvﬁ =1
, : e : r , 1 5, 1
Une particule libre a trois dimensions E= Emvx + Emvy + EmvZ =3
, . . , : 1 , 1 ,
Une particule liée a un ressort a une dimension E=—mv: +—kx =2

PG : Thermodynamique Cours 6 10/46



EPFL Chaleur élémentaire

Chaleur spécifique a volume constant

« Cas d’un parfait gaz monoatomique (f=3) He

3
Con = ER CCun=125 J/K.rﬁ

Cuivre

« Cas d'un gaz parfait diatomique avec une liaison rigide

o translation: 3
H o rotation (Vzloxwy? + Y2loxw,?): ?

C,, = %R Cum = 20,8 JIKImal>

PG : Thermodynamique
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Chaleur élémentaire

Chaleur spécifique a volume constant

« Cas d’un gaz parfait diatomique avec une liaison élastique

C/
H

7
f=7 C,=—=R| cy,=292 JK.mol

3 translations + 2 rotations = 5

+ modes de vibrations suivant la liaison (deux termes):
a) Energie cinétique liée au déplacement des atomes
Ecin, vib — 1/2p(dr/dt)2 =% kBT avec U = m1m2/(m1+m2)

b) Energie potentielle due a la variation de la distance des atomes
par rapport a la position d’équilibre

Epot = kr2=" kBT

PG : Thermodynamique
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Chaleur élémentaire

Chaleur spécifique a volume constant

Suite cours théorie cinétique : Gaz parfait : Energie interne :

« C’est la somme des énergies microscopiques (dans le référentiel du centre de masse)
» Pour un gaz avec f "degrés de liberté":

Boltzmann : U= 2 E oiccues  Emotecutes :ikBT
particules 2
U:iN@T
2
_J
U= ) R James Prescott Joule
1818 - 1889
Premiére loi de Joule : Pour un gaz parfait I'énergie interne U. — inRT
est uniquement fonction de la température )

Note : on appelle parfois un gaz parfait avec f > 3 un gaz de Laplace ou bien un gaz idéal.

PG : Thermodynamique Cours 6 13/46
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Chaleur élémentaire

PG : Thermodynamique

1%

U
oT ),

Chaleur spécifique a volume constant

U I'énergie interne du systéme

De maniere générale, si les molécules du gaz parfait ne sont pas ponctuelles et
possédent des "degrés de libertés" internes supplémentaires :

f

gaz parfait ~—

U = Nk, T

1%

(%) Lty Lun

oT 2
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Chaleur élémentaire

Chaleur spécifique a pression constante

« Considérons maintenant un cas ou le volume est variable et la pression constante.

* Latempérature s’éléve de AT sans que la pression ne change.
o Note : = il y a maintenant un travail mécanique mis en jeu : dW = - pgy AV

* Quelle est la quantité de chaleur Q échangée ?
o L'expérience montre que : | Q < AT et | Qoum,n
o Le coefficient de proportionnalité s'écrit :

Q=C,AT
v, _’A I Al Q =n C,nAT (n: nombre de moles) A
Vl > Q =m c AT (m: masse) unités
Tl T Tz

&
% I C,: capacité calorifique a pression constante (J/K)
O Cpom: capacité calorifique molaire a pression constante (J/K/mol)
Cp. capacité calorifique massique a pression constante (J/K/kg)

PG : Thermodynamique Cours 6 15/46
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Chaleur spécifique a pression constante

» Une partie de I'énergie apportée a été utilisée pour faire bouger le piston, le cout
est un travail mécanique dW = - pgdV

 Le reste (dU - dW = dU + pegdV = C,dT) engendre un changement de
température dT

« Sion travaille a pression constante , dpe,: = 0, il est utile d'introduire une

Nouvelle fonction d'état nommée enthalpie :

H=U+pV

* Motivation : a pression constante, dp = 0 et
« C,dT =dU + pdV =dU + pdV + Vdp = d(U + pV) =dH

PG : Thermodynamique Cours 6 16/46
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Chaleur élémentaire

Chaleur spécifique a pression constante

La chaleur spécifique a pression constante est définie comme

C=<9H

o — C,: capacité calorifique a pression constante
or ),

_1(oH

om = G_T C,m: capacité calorifique molaire a pression constante
P

A pression constante 5Qp =C,dT

PG : Thermodynamique Cours 6 17/46
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Chaleur élémentaire

PG : Thermodynamique

Chaleur spécifique a pression constante

Exemple :

o Eau: C,y, = 18 cal/K/mole
o He: 5 cal/K/mole

o Ether éthylique (C,H5),0: 32 cal/K/mole

Quelques valeurs de cpet Cpy

Historiquement, la calorie fut définie comme
la chaleur nécessaire pour élever de 1
degré 1 gramme d'eau a pression constante
(de 14.5 ° C a 15,5 ° C a la pression
atmosphérique standard).

ey | ¢ | Cy, | Cp, |Cp-Cy,
(kg K) (kg ) ol mol k)| malK) 1 = Co/cy

He 338 | 518 | 125 | 208 83 167

Ne 062 | 103 | 1247 | 2080 | 83 167

N, 074 | 104 | 207 | 2909 | 84 140

) 065 | 091 | 2105 | 2943 | 84 140

CO, 064 | 083 | 2846 | 369 | 85 130

H,0(100°C)| 146 | 201 | 2695 | 3432 | 84 132
o 0128 %5
Cu 0,39 245

Cours 6 18/46
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Chaleur élémentaire

Chaleur spécifique a pression constante

Pour un gaz parfait :

nRT

+2
H=U+pV:§nRT+nRT=f2

,-(2) L2 c, Y2 122
oaT ), 2 "\ dT ), 2

R

Seconde loi de Joule : Pour un
gaz parfait I'enthalpie ne dépend
que de la température

dH = C,dT

PG : Thermodynamique

Rappel. Premiére loi de Joule :
Pour un gaz parfait I'énergie interne
ne dépend que de la température.

dU =C,dT

Cours 6 19/46
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Chaleur élémentaire

Relation de Mayer pour les gaz parfaits

Pour un gaz parfait nous avons la relation : Q”“
.x“\

= W
e “
5

Relation de Mayer pour un gaz parfait > '

C,—Cy=nR ou C,,—-Cy,=R &‘

Julius Robert von Mayer
1814 - 1878

J N

>

-

On définit aussi :

_C, R f+2 N 2| Exposant adiabatique ou
C C f f| -coefficient de Laplace

Pierre-Simon Laplace
1749 - 1827
PG : Thermodynamique Cours 6 20/46



cPr-L

Chaleur élémentaire

PG : Thermodynamique

Relation de Mayer pour les gaz parfaits

Com—Cum=R
ov | e | Oy | Cp |Cp-Cy,
(kg ) (g ) (WimaK) (molK)| (WimalK) 1 = C/Cy

He 338 | 518 | 125 |f208Y /83 1,67

Ne | 02 | 103 | 1247 [\oog)/|[83\| 187

N, 074 | 104 | 20,7 |/29,09\|| 84 1,40

0y 065 | 091 | 21,05 |[\2943/|| 84 1,40

C0, 064 | 083 | 2846 | 3696 |\ 85 1,30

H,0(100°C)| 146 | 201 | 2595 | 3432 | \84 1,32
Pb 0,128 26,5
Cu 0,39 245
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Chaleur élémentaire

PG : Thermodynamique

 Monoatomique : y = 5/3

Coefficient adiabatique pour les gaz parfaits

C, f+2
- Diatomique rigide : y = 7/5 V= C. = P
» Diatomique non rigide : y = 9/7 = 1,28
ov | e | G, . SR Oy,
(kg )| (g )| ol K)ol maNLy = Cr/Cy
338 | 518
062 | 1,03

N, 074 | 104 | 27 | 2909 | 84

0 066 | 091 | 2106 | 2943 | 84

CO, 064 | 083 | 2846 | 36% | 8% 1,30
Hy,0(100°C)| 146 | 201 | 2695 | 3432 | 84 1,32

Pb 0,128 26,5

Cu 0,39 24.5

Cours 6 22/46
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Chaleur élémentaire

Gel des degrés de liberté

* Monoatomique : y = 5/3 = 1,67
» Diatomique rigide :y=7/5=1,4 y=—2=1+
» Diatomique non rigide : y = 9/7 = 1,28 v

1.67

1.40 -
1.28 -

(C CC S
D) | D) |
40 300 1500 6000 T [K]
Evolution de y avec la température

PG : Thermodynamique Cours 6 23/46
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Chaleur élémentaire

Gel des degrés de liberté

724 Molécule diatomique

5/2 -

Cvmzl(a—U) —iR Cy
n\ dT 2

v
3/2

0 Trot Tvib
T

I| faut comparer I'énergie typique associée au "degré de liberté" (rotation, vibration) et kgT. Si
E >> kgT ce mode de stockage de I'énergie n'est pas activé (gel du degré de liberté). La
justification de cet effet nécessite la mécanique quantique.

Exemples : kgT @ 300 K = 1/40 eV = 25 meV
* Rotations =103 -104eV
* Vibrations = 0.1 -0.01 eV
» Transitions atomiques = 1 eV

PG : Thermodynamique Cours 6 24/46
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Gel des degrés de liberté

7/2 1 . T =
I, ///
= Brz
6/2 - Cl, ~ /
C
\Y% - . H2
2 HCl1
5/2 - —
/
H,
4/2 I I | | — T T T T T T T T T 1711
200 500 1000 2000

T ( K)
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Chaleur élémentaire

Chaleur spécifique des solides

PG : Thermodynamique Cours 6 26/46



Les objectifs dw coury 6

PG : Thermodynamique

Comment quantifier changement de température et
quantite de chalewr échangée

Completementy mathémaliques sur les difféerentielles d une
fonction de plusiewrs variables : une approche
pragmatique de physiciesv

Chalewr et trovail sont elles des quantités conservalives
(indépendante de lo transformation,) ?

Cours 6 27/46
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Outils mathématiques, Cours 1, suite

Différentielle de fonction de plusieurs variables

Pour des fonctions de plusieurs variables, par exemple ici deux variables f(x,y) :

o On sait que " f'(x,y) " n'a pas vraiment de sens et
on est amené a définir des dérivées partielles :

(aféx,y)) Pente de f(x,y) dans la direction Ox
X y

| ’if‘%v_!i; Bz
Lw it

df(x,
( fgy y)] Pente de f(x,y) dans la direction Oy

o Dont un des intéréts est que leur connaissance est suffisante pour connaitre la pente
dans d'autres directions.

: : 1 of of
Par exemple la pente sur la bissectrice y = x est : ﬁ . + a—y
y X

Note : en langage de mathématiciens, on parlerait de changement de variables. Ce
n'est rien d'autre que définir le plan tangent a la surface z = f(x,y) au point X, Y.
PG : Thermodynamique Cours 6 28/46



=PrL Outils mathématiques, suite

Différentielle de fonction de plusieurs variables

o On écrit la différentielle de f, fonction des infiniment petits dx et dy :

2 2 2 2
o On peut aussi écrire des dérivées secondes etc. 9 j: J j; If If
dx* dy° 0dxdy Jdyodx

o Pour les dérivées partielles secondes, on peut 7 f 5 f
montrer que [ordre des dérivation n'est pas axay:ayax
important (théoréme de Schwarz) :

o Prenons maintenant une expression arbitraire :

"df" = F(x,y)dx + G(x,y)dy |
B

o Pour intégrer df du point A (Xxa,ya) au point B ﬁ

(Xg,Yg) On peut suivre plusieurs chemins : A

v

o Le résultat dépend il du chemin ?

PG : Thermodynamique Cours 6 29/46
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Outils mathématiques, suite

Attention, ne pas confondre :

» Intégrale multiple sur une surface, volume etc...

JJ fexyydxdy ([ Feepd’s

Surface S Surface S

.”I f(x,y,z)dxdydz ”J F(x,y,2)dV

Volume V Volume V

* Intégrale curviligne, le long d'un chemin

Chemin Chemin
A(x, ¥, )B(x.¥5) A(x, ¥, )B(x.¥5)

v ﬁB [ drxy) = | ulxy)x+vix,y)dy
A

PG : Thermodynamique Cours 6 30/46



=PrL Outils mathématiques, suite

Différentielle de fonction de plusieurs variables y“
o Le résultat peut dépendre ou non du chemin : ﬁ\ B
= Sil'intégrale dépend du chemin, on notera la différentielle &f . A -
X
= Si l'intégrale ne dépend pas du chemin, on écrira df et on parlera de
différentielle totale exacte. Dans ce cas on peut affirmer que :
» |l existe une fonction f(x,y) telle que (g_f) =F(x,y) et [g_f) =G(x,y)
X y y X

« Avec: dfz(g—f) dx+(g—f) dy=F(x,y)dx+G(x,y)dy
X y y X

- B [df = £B)- f4)

» Remarque : indépendant du chemin < intégrale nulle sur un q')df:()
chemin fermé. En physique on parlerait de grandeur conservative. -

PG : Thermodynamique Cours 6 31/46
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Outils mathématiques, suite

Différentielle de fonction de plusieurs variables

o Exemple 1:

Sf=ydx A est l'origine (0,0) et B le point (1,1) A
(1.0) (L) 1 1 y B
Chemin 1 : [ yax+ | yax=[0.dx+ [yde=[est] +[..] =0 5
0.0) (1.0) 0 1
( ‘ x*7 1 1
Chemin 2 : J' ydx=[xdxr=|=—| == A —
e 9 2 2 X
A=Y 0

Concrétement cela signifie que il n'‘existe pas de surface z = f(x,y) telle que au point
(x,y), la pente dans la direction Ox soit proportionnelle a y et avec une pente
horizontale dans la direction Oy.

o Exemple2: §f=xdx+xydy

1D (1,0) (LD 4

Chemin 1 : j xdx+xydy= I xdx+xydy+ jxdx+xydy Yy B
(0,0) chemin 1 (0,0) (1,0)
‘ ‘ 1 1 2
= [xdx+0+0+ [ Ly.dy=—+0+0+-=1
o o’ 2 2 1
x= y=0
(1. 1 2 37 N
; X X —
Chemin 2 : J. xdx+xydy:J.xdx+x2 dx=|—+— :g A X
(0,0) chemin 2 y= 0 2 3 6
R chemin 2 y=X 0

PG : Thermodynamique
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=PrL Outils mathématiques, suite

Différentielle de fonction de plusieurs variables

o Exemple d'une différentielle totale exacte :

fx,y)=x"y
of of : Indépendant du chemin utilisé,
dfz(a—x) dx+[$j dy =2xydx + x°dy comme dans le cas d'une
Y x fonction de une variable.

[af = [2xydx+x*dy=[f(x. )]} = F(B)- £(A)

Note : Pratiquement : en définissant le chemin on impose une relation entre y et x, y(x) ou bien x(y)
ou bien sous forme paramétrée x(u) y(u), en la reportant dans l'intégrale celle-ci devient une

intégrale habituelle d'une fonction a une variable.
(x5.5) Xp
F(x,y)dx+G(x,y)dy = JF (x,y(x))dx +G(x, y(x))y'(x)dx

(x4 4 ), chemin C, y(x) 4
ou bien = ( : -)dy

u

ou bien = QF(u)x'(u)du+G(u)y'(u)du

o
u

A

PG : Thermodynamique
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Outils mathématiques, suite

Différentielle de fonction de plusieurs variables

Les chances d'obtenir une forme différentielle exacte en écrivant df = F(x,y)dx + G(x,y)dy
avec F et G écrites de maniére arbitraire sont tres tres faibles.

* Une condition nécessaire et suffisante pour que df = F(x,y)dx + G(x,y)dy soit une
différentielle totale exacte est que (lemme de Poincaré ou théoréme de Cauchy) :

(aG(X,)’)) ZLBF(x,y)] Autrement dit que le théoreme | 925 9% f

ox dy de Schwarz soit vérifié. dxdy Jydx

2 2 2
Exemple cas précédent f(x,y) = x?y : J f = 0x =2x= _82xy = Jf
dxdy \ ox dy dyox

« Siilyanvariables x;aveci=1 ... n, la condition sur

Of = X (X0, X )AX + ..+ X (X, X )X 4.4+ X (X, X )aX

X (X,,...x ) 0X (X,)--.,X,)
0X . - ox.

] 1

s'écrit :

v(i,j)

PG : Thermodynamique Cours 6 34/46
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Outils mathématiques, suite

Différentielle de fonction de plusieurs variables

Pour des fonctions de une variable :

[ @)= fb)- fa)

[ Feodx+ [ fronde= £b)- f(a)

On note souvent de maniére plus concise :

ne dépend que de la valeur de f(x) en
aetb

est indépendant de ¢ (méme si ¢ est
en dehors de l'intervalle [a,b])

4 dx =

j f(x)dx = j de f(b)- f(a)

Note : dans toute cette section, on suppose que les fonctions ne sont pas pathologiques, c.a.d. elles
sont définies, continues, dérivables sur un ouvert simplement connexe etc...etc...etc...

PG : Thermodynamique
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Outils mathématiques, suite

PG : Thermodynamique

Différentielle de fonction de plusieurs variables

Pour des fonctions de une variable :
Si on connait f'(x) ou df JXf'(x)dx:f(X)—f(a)

On peut reconstruire f(X) (a une constante pres)  f(X)= f(a)+Jde

Pour des fonctions de deux variables {x,y} :

Est il toujours légitime de faire pareil ?

Et peut-on reconstruire f(X,Y) ? f(X.Y)=f(x,,y,)+ o df (x,y)

AN

Oui pour autant que cette intégrale ne dépende pas du
chemin utilisé pour aller de (xq,yo) a (X,Y).

C'est a dire que df soit une différentielle totale exacte

A\

Cours 6 36/46
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Outils mathématiques, suite

Différentielle de fonction de plusieurs variables

Exemples dans la vie quotidienne
Randonnée en montagne :

 Le dénivelé est indépendant du chemin
emprunté, il est légitime d'écrire dh et Ah.
La signification de Ah est :

* Ahj = h(position F) — h(position 1).

* On a toujours Ahjg = Ah,c + Ahcr quelque
soit le point intermédiaire C.

* Quand on retourne au point de départ
Ahyx = 0.

« Le temps du parcours dépend du chemin utilisé, il faut écrire &t et il est ambigu
d'écrire At. Cela laisserait entendre qu'il existe une fonction t(x,y) telle que :
* Aty = t(position 2) — t(position 1) :
o Ati_3= Aty + Aty_3 mais le résultat déepend du point 2!
o Quand on retourne au point de départ Atyx # 0.

PG : Thermodynamique Cours 6 37/46



=PrL Outils mathématiques, suite

Différentielle de fonction de plusieurs variables

Exemples dans la vie quotidienne
Randonnée en montagne :

» Exercice a faire a la maison. Autres formes différentielles non exactes
o Montrer que la distance parcourue ou la longueur du chemin entre
deux points ne se comportent pas comme une fonction de plusieurs
variables d'état. Elles ne peuvent donc pas étre écrite sous la forme
d'une différentielle totale exacte.

Question :
* Le dénivelé est indépendant du chemin emprunté. Quand on retourne au

point de départ Ahyx= 0.

« Quand on retourne au point de départ la variation d'énergie mécanique est
nulle : AEg, + AE, = 0.

» Pourtant on a quand méme dépensé de I'énergie | (— premier principe)
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Les objectifs dw coury 6

PG : Thermodynamique

Comment quantifier changement de température et
quantite de chalewr échangée

Completementy mathématiques sur les différentielles d une
fonction de plusiewrs variables : une approche
pragmatique de physicier

Chalewr et travail sont elles des quantités conservatives
(indépendante de la transformation) ?
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Premier principe
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Différentielle de fonction de plusieurs variables

Application a la thermodynamique.
p A

Cas de transformations quasi-statiques dans un gaz parfait.
* Travail élémentaire
OW = -po,dV=-pdV et pV=nRT

Exercice : A et B sont a la méme température avec des
pressions et volumes différents. Calculer le travail pour aller de

v

A a B selon le chemin 1 (isotherme) et le chemin 2 (P = Cst puis
V = Cst).

B
W, =|-pdV =—nRT d—V:nRTln Ya
1 % v,

Vg Vs
W, =[-pdV==p,[aV+[-pav=p,(V,-V,)+0=p,(V,~V,) =W,

A vV, Vy

Le travail élémentaire n'est pas une différentielle totale exacte, il dépend du
chemin utilisé, d'ou Il'ecriture avec un & et on n'écrira pas AW mais W.

PG : Thermodynamique
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Premier principe

Différentielle de fonction de plusieurs variables

» Application a la thermodynamique.
p A

Cas de transformations quasi-statiques dans un gaz parfait.

« Echange de chaleur

Exercice : A et B sont a la méme température avec des
pressions et volumes différents. Calculer la chaleur échangée
pour aller de A a B selon les chemins 1 et 2.

p,V,=nRT p,V,=nRT V
A Ee etdonc I,=—"T T,=
p.Ve=nRT, p,V,=nRT, V,

T

==

Q =C,(T,-T)+C,(T-T,)

(c,-¢,)1,-(C,-C,)T =nR(T,-T)= nk(u]T

A

Q,=C,(T,-T)+C,(T-T,)=-(C,-C,)T,+(C,-C,)T =nR(T—T2)=nR(—VB_VA

Jrec

B

L'échange de chaleur élémentaire n'est pas une différentielle totale exacte, elle | /4 &
dépend du chemin utilisé, d'ou I'écriture avec un & et on n'écrira pas AQ mais Q. AR\
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Premier principe

OW et 6Q ne sont pas des différentielles totales exactes.

Q > Que faire ? K}J
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Premier principe

oW et 6Q ne sont pas des différentielles totales exactes
=
Le travail ou la chaleur échangés dépendent du chemin utilisé
=
Le travail ou la chaleur ne sont pas des grandeurs conservatrices

« Ce n'est pas si surprenant car on sait que I'on peut échanger du travail et 'f"""i’f—i?\
de la chaleur (expériences de Joule et de Mayer, 1842 & 1843) et les deux
quantités se comptent avec la méme unité d'énergie (le Joule en MKSA)

« Echanges d’énergie (Cours travail élémentaire et chaleur élémentaire)
o Macroscopique : travail (W)
o Microscopique : chaleur (Q)

* Proposition : la somme des échanges macroscopiques + microscopiques ( = W + Q)
est indépendante du chemin utilisé.

» Testons l'idée sur un cas particulier pour lequel nous savons faire le calcul — exercice
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L’essentiel dw counrs 6
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Chalewr 3pe'c4’ﬁ’qu,e/0‘uv0‘hwn€/ C, = (a_U) O — inR
covnustont. § 14

Degré de liberte.

Enthalpie; fonction d'état utile powr les = UTDY
transformations v pression constonte: =u+p

Chalewr spécifique & pression Cz(a_H) CGP:(f”jnR
corustante. P\ dT ), 2
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C" —-Cy" =nR
Relation de M @V’P(NM/‘ wvgag ’
powfait et coefficient adiabatique. )/:& ,}/GP:M
Cy /
n Differentielle totule exacte, df = (ai:) dx+(af) dy
Intégrale indépendante duw chemin Vs
Of =F(x,y)dx+G(x,y)dy

Théoreme de Schwautsy O f _f (BG(x,y)) :(BF(x,y)j
Lemume de Poincowrée 0xdy 0dydx ox J, dy

n W et 5Q ne sont pay des differentielles totales exactes.

PG : Thermodynamique Cours 6 45/46



=-11 Expériences de cours

Expériences auditoires EPFL : auditoires-physique.epfl.ch
Chaine YouTube : www.youtube.com/channel/UC4htKGFCRRkFylgAo8DGocg

Degrés de liberté

H H

O—*—~0

Expérience de Dulong et Petit

Modéle de vibrations dans un cristal
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